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Abstract— Due to the continuous booming of surveillance and
Web videos, video moment localization, as an important branch
of video content analysis, has attracted wide attention from
both industry and academia in recent years. It is, however,
a non-trivial task due to the following challenges: temporal con-
text modeling, intelligent moment candidate generation, as well
as the necessary efficiency and scalability in practice. To address
these impediments, we present a deep end-to-end cross-modal
hashing network. To be specific, we first design a video encoder
relying on a bidirectional temporal convolutional network to
simultaneously generate moment candidates and learn their
representations. Considering that the video encoder character-
izes temporal contextual structures at multiple scales of time
windows, we can thus obtain enhanced moment representations.
As a counterpart, we design an independent query encoder
towards user intention understanding. Thereafter, a cross-model
hashing module is developed to project these two heterogeneous
representations into a shared isomorphic Hamming space for
compact hash code learning. After that, we can effectively
estimate the relevance score of each “moment-query” pair via
the Hamming distance. Besides effectiveness, our model is far
more efficient and scalable since the hash codes of videos can be
learned offline. Experimental results on real-world datasets have
justified the superiority of our model over several state-of-the-art
competitors.

Index Terms— Video moment localization, multi-scale moment
candidate generation, cross-modal hashing, temporal context
modeling.

I. INTRODUCTION

W ITH the amount of videos growing exponentially,
searching videos of interest from a large collection has
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Fig. 1. An example of moment localization in a surveillance video.

been a hotspot in the field of information retrieval [1], [2].
Traditional studies mainly focus on searching for an entire
video corresponding to a given query from a large-scale video
collection [3], [4]. However, a video usually contains complex
scenes and involves a large number of objects and actions,
whereby only some moments may match the specific query
while the rest may be redundant to the end-users [5], [6].
Taking the video demonstrated in Fig. 1 as an example,
it depicts a scenario that a gangster robs and then flees. One
may be only interested in the moment “the man fired at the
white vehicle before fleeing”, which starts at 30.5s and ends
at 72.8s. Thereby, retrieving specific moments from a long
untrimmed video via natural language queries, the so-called
cross-modal moment localization, is highly desired in the
real-world application scenarios, such as video surveillance
[7], [8], robotic navigation [9], and autonomous driving [10].

Despite its importance and exciting prospect, localizing
moments from a given video is non-trivial, since it faces
the following research challenges. 1) Temporal Context
Modeling. In practice, there are some temporal words in
the given query, such as “first” and “before”, and therefore
modeling context information of video moments is essential
for improving localization accuracy. However, most of the
existing methods [8], [11], [12] adopt Bi-LSTM, Bi-GRU,
or their variants to characterize contextual information of
video moments. For instance, the final representations of
video moments in [11] are computed by transforming the
concatenation of the forward and backward LSTM outputs.
It cannot precisely capture long-term and multi-scale semantic
dependencies from relative long videos [13], and thus fails to
model the temporal context. 2) Moment Candidate Gener-
ation. Existing methods [7], [14], [15] commonly adopt the
sliding window strategy to densely divide the given video into
segments with different lengths, and then treat them as the
moment candidates. Such methods, however, are suboptimal
not only for the high computational cost, but also the NP-hard
search space. Moreover, regarding the offline moment gener-
ation, these networks cannot be trained in an end-to-end fash-
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Fig. 2. Schematic illustration of our proposed CMHN approach, which seamlessly integrates the moment generation, representation and localization within
a unified model.

ion, inducing poor availability when dealing with large-scale
videos. And 3) Efficiency and Scalability. As shown in Fig. 1,
to successfully take the criminal evidences of the gangster,
policemen usually need to efficiently localize several moments
from the surveillance video via different queries, such as “the
man fired at the white vehicle before fleeing” and “the white
vehicle exploded”. But existing models [7], [8], [11], [12]
typically utilize some query-aware attentive mechanism to esti-
mate the correlation between “moment-query” pairs. We name
such methods as iterative “query-for-moment” models. They
have to repeat the similar process for any new query, even to
the same video, resulting in inefficiency and low scalability.

To address the aforementioned challenges, we present an
end-to-end Cross-Modal Hashing Network, dubbed CMHN,
as shown in Fig. 2. Concretely, we first design a dual-path
neural network, comprising two independent modules: the
video encoding network (VEN) and the query encoding net-
work (QEN). Thereinto, the VEN utilizes a bi-directional
temporal convolutional network (Bi-TCN) to capture the
multi-scale context information from the input video, and
outputs the moment candidates and augmented moment rep-
resentations. By contrast, the QEN adopts the Bidirectional
Encoder Representation from Transformers (BERT) to deeply
understand the semantics of the given queries and learn the
corresponding feature representations of queries. Once the rep-
resentations of moments and queries are learned, we develop
a cross-modal hashing module to map them into a shared
isomorphic Hamming space to generate their hash codes.
Based upon hash codes, we estimate the similarities between
the query and moment via Hamming distance. It is worth
mentioning that with the well-trained model at hand, we can
learn the hash codes of any upcoming videos offline and inde-
pendently, which further improves the localization efficiency
and scalability.

The main contributions of this work are three-fold:
• To the best of our knowledge, this is the first work on

integrating cross-modal hashing into moment localization.
Such a method enables query-video matching based upon
hash codes and hence boosts the efficiency of moment
localization remarkably.

• We present a novel Bi-TCN based VEN, which can
automatically generate moment candidates and encode
multi-scale context information towards moment rep-
resentations. Most importantly, these two modules are
independent. We are thus able to learn the hash codes

of any new videos offline, which largely strengthens
localization efficiency and scalability.

• We perform extensive experiments on two bench-
mark datasets, namely ActivityNet Captions [16] and
TACoS [15], to justify the superiority of our model
regarding accuracy, efficiency, and scalability compared
to several state-of-the-art competitors. As a side contri-
bution, we have released the data, codes, and parameter
settings.1

II. RELATED WORK

In this section, we briefly review the following two research
directions highly related to ours: cross-modal hashing and
moment localization in videos.

A. Cross-Modal Hashing

Considering the advantages of low storage cost and fast
retrieval speed, cross-modal hashing is widely adopted in
the retrieval task. Existing methods can be roughly divided
into two categories: unsupervised and supervised ones. The
former [17]–[20] focuses on learning hash functions by
exploiting the intra- and inter-modality relations. For example,
Song et al. [17] proposed a novel inter-media hashing model to
linearly project the heterogeneous data into a shared common
Hamming space by co-regularizing the inter- and intra- media
consistency. Zhou et al. [18] presented a latent semantic sparse
hashing model, which utilizes sparse coding and matrix fac-
torization to capture the high-level latent semantic information
from images and texts. Moreover, Irie et al. [19] proposed
an alternating co-quantization scheme that alternately seeks
the binary quantizers for each modality by jointly solving
the subspace learning and binary quantization. Cui et al. [20]
utilized the semantics of related social tags to improve the
discrimination of feature representation and effectiveness of
hash code generation.

Different from the unsupervised methods, the supervised
ones [21]–[25] work towards leveraging the semantic labels
of training data to guide the hash code learning. For example,
to capture the underlying semantic information, Yu et al. [21]
introduced a bi-stage discriminative coupled dictionary hash-
ing model to jointly learn the coupled dictionaries and hash
functions for both modalities. Arguing that the semantic
affinities can be used to guide hashing, Lin et al. [22]

1Our open source code: https://github.com/Huyp777/CMHN
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formulated a semantic-preserving hashing paradigm where
the probability distribution generated from semantic affini-
ties is approximated via minimizing the Kullback-Leibler
divergence. The above supervised methods mainly rely on
hand-crafted features, which inevitably leads to the sepa-
rate feature extraction and hash codes learning procedures.
To overcome this drawback, Jiang and Li [23] established an
end-to-end cross-modal hashing framework with deep neural
networks, whereby hash code learning is performed on each
modality from scratch. Lu et al. [24] proposed a hierarchical
recurrent network to exploit both spatial details and semantic
information for effective hash codes generation. Sun et al. [25]
utilized the cross-modal hashing methods based upon hierar-
chical label comprehension for clothing recommendation in
the fashion domain.

Although much progress has been made in cross-modal
image retrieval, hashing for video retrieval is still limited
to mono-modal retrieval task, such as near-duplicate video
retrieval [26], [27]. Cross-modal hashing for video retrieval is
still a largely untapped problem, not to mention the moment
localization.

B. Moment Localization in Videos

To localize the target moment in a certain video related
to the given query, Gao et al. [15], [28] designed two
temporal unit regression networks, which can jointly pre-
dict action proposals and refine the temporal boundaries by
temporal coordinate regression. Almost at the same time,
Hendricks et al. [14] employed a Moment Context Net-
work (MCN) to integrate local and global video features
for query-based moment localization. Considering the fact
that previous models ignore the spatial-temporal information
within the multi-modal data, Liu et al. [7], [8] designed two
different attention-based networks for moment localization.
The former aims to capture the most important context infor-
mation to enhance the moment representations, while the latter
focuses on extracting useful keywords from the given query.
Subsequently, Yuan et al. [11] designed an Attention Based
Location Regression (ABLR). It first adopts a co-attention
memory model to capture the spatial-temporal interactions
between video segments and query, and then generates the
temporal coordinate of the target moment via the attention
based regression network. To better model the spatial-temporal
information in both modalities, Xu et al. [29] introduced a
multi-level model, which incorporates multi-modal data via
early fusion, and then utilizes video captioning as an auxiliary
task to further guide the temporal coordinates prediction of the
moment candidates. As prior studies only focus on one aspect,
such as contextual feature representation and spatial-temporal
information modeling of this emerging task, Zhu et al. [12]
proposed the Cross-Modal Interaction Network (CMIN). This
model utilizes the graph convolution network and multi-head
self-attention for fine-grained representation learning on each
modality, which further captures the corresponding “frame-by-
word” interactions among these modalities. Moreover, it pre-
dicts the alignment scores of the moment candidates and

adjusts the start and end boundaries of the high-score moments
to accomplish the moment localization task.

In summary, the aforementioned studies have dedicated
great efforts to the video-query interaction and jointly learn
their representations. Although promising retrieval accuracy
has been achieved, they fail to deliver significant improvement
in retrieval efficiency and scalability. More precisely, the afore-
mentioned models can only identify one target moment based
on each query at a time; whereas to localize all the target
moments in a certain video regarding the relevant queries,
they need to repeat the same operation iteratively until all the
queries have been processed completely. Thereby, such itera-
tive “query-for-moment” processing strategy seriously deteri-
orates the efficiency and scalability.

III. OUR PROPOSED METHOD

As shown in Fig. 2, our proposed CMHN comprises two
components: 1) a dual-path neural network, including two
independent modules: VEN and QEN. The former one is
designed to generate moment candidate set C and learn its
representation ĤC . The latter is utilized to extract representa-
tion ĤQ for the query set Q. And 2) a cross-modal hashing
module is built to learn the hash codes of both modalities.
In what follows, we will detail them one by one.

A. Problem Formulation

Given a training video set containing N untrimmed videos
Sv = {v1, . . . , vk , . . . , vN }, where vk denotes the k-th
video in the training set. Assuming that there are Mk

queries with respect to the video vk , we denote it as
Qk = {sk,1, . . . , sk, j , . . . , sk,Mk }. Meanwhile, we define Ak =
{[tk,1

s , tk,1
e ], . . . , [tk,Mk

s , tk,Mk
e ]} are the exact video moments

in vk corresponding to the queries in Qk labeled by humans,
where [tk, j

s , tk, j
e ] ∈ Ak is the start and end time of the j -th

target moment in vk .
Based on the training data, we aim at learning a cross-modal

hashing network. With the well-trained model at hand, given
a new untrimmed video v and its query set Q, we could first
generate moment candidate set C and then the hash codes for
each moment and query. Afterwards, we can localize the target
moments from C based on Hamming distance such that their
timestamps are equal to their annotation A.

B. The VEN Module

To generate the moment candidate set C containing moments
in various lengths from the given video v and learn their
representations, we propose a novel video encoding network
VEN, as illustrated in Fig. 3. VEN consists of two modules:
temporal context modeling, as well as moment generation and
representation.

1) Temporal Context Modeling: Given the untrimmed video
vk , we first utilize the 3D convolutional network (C3D) [30] to
extract local feature sequence Xk = [xk,1, . . . , xk,i , . . . , xk,Rx ],
where xk,i represents the i -th local feature of video vk and Rx

denotes the length of local feature sequence. And then we build
a model to enrich these local features with the consideration of

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on May 05,2021 at 11:30:55 UTC from IEEE Xplore.  Restrictions apply. 



4670 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

Fig. 3. The structure of our proposed VEN module. It first adopts the
C3D model to obtain local features. And then it incorporates the Bi-TCN
model to learn the local feature by capturing the corresponding pre-context
and post-context information. Subsequently, a series of 1D regular convolution
is adopted to generate moment candidates. Thereafter, a MLP model is applied
to obtain feature representations of all the moment candidates.

context information. Most of the existing mainstream methods
adopt Bi-LSTM or Bi-GRU model [31], [32] to extract the
critical contextual information from the feature sequence Xk .
As each hidden state only memorizes part information from
its input and the pre-hidden state, the center hidden state may
merely retain very few information from the farther ones.
Therefore, they cannot perfectly capture long-term semantic
dependencies from a relatively long video [33].

Recently, a new context modeling strategy TCN [13] has
been introduced, yet it only focuses on the correlation between
current local feature and its pre-context information, thor-
oughly ignoring the post-context information. Motivated by
this, we design a novel Bi-TCN network, which can capture
long-term contextual dependencies of each xk,i from both
pre-context and post-context information, and hence effec-
tively enhance the contextual representation. For instance,
Fig. 3 shows an example of the Bi-TCN with three layers.2

After the three-layer 1D dilated convolution processing, each
element of v(3)

k integrates the contextual information from two
directions to form a more comprehensive feature representa-
tion. Generally, inputting Xk into the Bi-TCN with E − 1
layers, the output can be formulated as,⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

v(1)
k = θ1(Xk, δ

1, d1),
...

v(e)
k = θe(v

(e−1)
k , δe, de),

...

v(E−1)
k = θE−1(v

E−2
k , δE−1, d E−1),

(1)

where θe refers to the 1D dilated convolution of the e-th layer,
de and δe respectively denote the dilation factor and filter
kernel size of θe.

2The dilation factors d of two hidden layers and the output layer are
respectively 1, 2 and 4. Besides, the kernel size of all filters is 3. Notably,
to ensure the output feature sequence of each layer equals to the input length,
the zero padding (i.e., gray rectangle) with length (2,4,8) is added to different
layers.

2) Moment Generation and Representation: After obtaining
long-term dependencies of each local feature, a series of 1D
regular (i.e., d = 1) convolution operations with different
kernel sizes δ∗ are applied to v(E−1)

k for moment candidates
generation,3 which can be formulated as follows,

Ck = {ck,1, . . . , ck,p, . . . , ck,Nk }
= θE

(
v(E−1)

k , δ∗, d = 1
)
, (2)

where θE denotes the 1D regular convolution, ck,p refers to
the p-th moment candidate, and Nk stands for the number of
candidates.

Afterwards, we utilize the multi-layer perception (MLP)
network4 to obtain the corresponding feature representations
for all the moment candidates in Ck ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

H1
Ck

= σ 1
c (W1

cCk + b1
c),

...

Ht
Ck

= σ t
c (W

t
cHt−1

Ck
+ bt

c),
...

HT
Ck

= σ T
c (WT

c HT −1
Ck

+ bT
c ),

(3)

where Wt
c, bt

c, and Ht
Ck

respectively denote the weight
matrix, bias vector, and output sequence of the t-th hidden
layers. Meanwhile, σ t

c is the Randomized Leaky Rectified
Linear Units (RReLU) function [34], and ĤCk = HT

Ck
=

[hck,1 , . . . , hck,p , . . . , hck,Nk
] ∈ R

Nk×L refers to the representa-
tions of moment candidates, where L denotes the dimension
of each candidate.

C. The QEN Module

To learn query representations, most existing methods uti-
lize Bi-LSTM with word embeddings as input to obtain
the final sentence-level representation. However, Bi-LSTM
cannot obtain the long-term semantic dependencies for the
relatively long query, resulting in poor feature representation.
Fortunately, the cutting-edge language representation model,
i.e., Bidirectional Encoder Representations from Transformers
(BERT) [33], has gained promising performance in the field
of natural language processing. It can deeply understand
the semantics of the given sentence through the multi-layer
bi-directional representation. In light of this, we employ the
off-the-shelf language representation model BERT to perform
query encoding. More importantly, the pre-trained BERT can
be utilized directly in our QEN and fine-tuned accordingly to
better represent queries. As shown in Fig. 4, all queries of Qk

are processed by BERT to output corresponding representa-
tions Q̃k = {̃sk,1, . . . , s̃k, j , . . . , s̃k,Mk }, where s̃k, j denotes the
feature representation of the j -th query related to vk .

3In our work, δ∗ ranges from 1 to Δ, where Δ is a pre-defined maximum
kernel size for candidates generation.

4In our experiments, the layers of MLP are set to two, i.e., T = 2.
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Fig. 4. The pipeline of our QEN module. It first utilizes BERT to perform
feature encoding for each query in Q. Afterwards, it adopts the MLP model
to obtain their final representations ĤQ.

Subsequently, QEN utilizes a three-layer MLP to obtain the
corresponding embeddings for all queries,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

H1
Qk

= σ 1
s (W1

s Q̃k + b1
s ),

...

Ht
Qk

= σ t
s (W

t
sHt−1

Qk
+ bt

s),
...

HT
Qk

= σ T
s (WT

s HT −1
Qk

+ bT
s ),

(4)

where Wt
s , bt

s , and Ht
Qk

respectively denote the weight
matrix, bias vector, and output vector of the t-th hidden
layers. Symbol σ t

s is the RReLU function [34], and ĤQk =
HT

Qk
= [hsk,1 , . . . , hsk, j , . . . , hsk,Mk

] ∈ R
Mk×L refers to the

representations of queries, where L denotes the dimension of
each query.

D. Cross-Modal Hashing

Having obtained ĤCk , we adopt the element-wise sign
function sgn(·) to generate the final hash codes for Ck as,

BCk = sgn(ĤCk ) = [bck,1 , . . . , bck,p , . . . , bck,Nk
], (5)

where bck,p ∈ {−1,+1}L denotes the final hash code of
the p-th moment candidate with length L. Analogously,
the element-wise sign function sgn(·) is also utilized to
transform the ĤQk into the final hash codes of query set Q̃,
as

BQk = sgn(ĤQk ) = [bsk,1 , . . . , bsk, j , . . . , bsk,Mk
], (6)

where bsk, j ∈ {−1,+1}L denotes the final hash code of the
j -th query with length L.

To ensure each “moment-query” pair in the Hamming space
maintains the intrinsic similarity in the original real-valued
feature space, a loss function �1 for semantic similarity
preserving is proposed as follows,

�1 =
∑

k

( ∥∥∥ĤT
Ck
ĤQk − LM

∥∥∥2

F

)
, (7)

where
∥∥·∥∥F denotes the Frobenius norm, L refers to the length

of hash codes, and M is the cross-modal similarity matrix to
ensure that the similarity in the Hamming space coincides with
that in the original space.

Similar to the mainstream cross-modal similarity
matrix [23], [25], the straightforward approach is to adopt

0 or 1 to represent the similarity of each “moment-query”
pair by the following two steps: 1) We first adopt the general
evaluation indicator Intersection over Union (IoU) [35] to
evaluate the semantic similarities of the above Nk × Mk

“moment-query” pairs. Specifically, the IoU between two
moments is calculated as

IoU
ck,p
sk, j =

min
(

t j
e , τ

p
e

)
− max

(
t j
s , τ

p
s

)

max
(

t j
e , τ

p
e

)
− min

(
t j
s , τ

p
s

) , (8)

where τ
p

s and τ
p

e respectively denote the start and end time
points of the moment ck,p , and t j

s and t j
e are the start and

end time points of the target moment depicted by the query
sk, j . And 2) each IoU

ck,p
sk, j is then converted into Np, j ∈ {0, 1}

based on a pre-defined threshold λ. In particular, if IoU
ck,p
sk, j ≥

λ, Np, j is set to 1; otherwise, Np, j is set to 0. Therefore,
the Np, j are arranged orderly to construct the similarity matrix
T ∈ {0, 1}Nk×Mk .

Although feasible, solely adopting this relatively rough
metric approach (1-or-0) cannot accurately reflect the complex
intrinsic semantic similarities of different “moment-query”
pairs. As demonstrated in Fig. 5, the IoU

ck,1
sk,1 and IoU

ck,2
sk,1 are

larger than the threshold λ = 0.5, thereby the corresponding
N1,1 and N2,1 are all set as 1, i.e., ck,1 and ck,2 have identical
semantic similarities with sk,1. However, there are obvious
differences between ck,1 and ck,2. Consequently, the above
straightforward T has limited ability, resulting in information
loss and sub-optimal retrieval performance.

To address this issue, we propose a novel approach to
constructing the cross-modal similarity matrix M, as shown
in Fig. 5. More specifically, each element of M is directly set
as the IoU value to reflect the corresponding similarity of each
“moment-query” pair. For example, the (p, j)-th entry is rep-
resented as Mp, j = IoU

ck,p
sk, j (0 ≤ Mp, j ≤ 1). Accordingly,

with the help of this soft-value M, our proposed CMHN could
well retain the intrinsic similarity of each “moment-query” pair
in the Hamming space.

Apart from the semantic preserving regularization, we fur-
ther respectively regularize the binarization difference of
(hck,p , bck,p ) and (hsk, j , bsk, j ) to obtain the optimal continuous
surrogates of the binary hash codes. It is formulated as,

�2 =
∑

k

( ∥∥ĤCk − BCk

∥∥2
F + ∥∥ĤQk − BQk

∥∥2
F

)
. (9)

Besides, to balance the learnt hash codes and maximize the
information conveyed by each bit of the codes [25], ĤCk and
ĤQk need to be further regularized as follows,

�3 =
∑

k

( ∥∥ĤCkU
∥∥2

F + ∥∥ĤQkZ
∥∥2

F

)
, (10)

where U ∈ R
L×Nk and Z ∈ R

L×Mk respectively denote a
matrix whose elements are ones.

The final objective function of our CMHN model is the
combination of the above three (�1, �2, and �3),

	 = �1 + α�2 + β�3, (11)

where α and β are the non-negative trade-off parameters.
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Fig. 5. Two kinds of similarity matrices, i.e., M and T . Compared with relatively rough similarity metric (1-or-0) of T , M is built based on IoU values
to ensure that the intrinsic similarity of each “moment-query” pair can be maintained in Hamming space.

Fig. 6. The inference process of our moment localization model CMHN. After completing the model training, given the video v and its related queries Q,
CMHN not only generates the corresponding hash codes (BC , BQ) for different modalities, but also implements the moment retrieval based on Hamming
distance.

E. Inference
As shown in Fig. 6, for an untrimmed video v and its

related query set Q, CMHN first separately generates the
corresponding feature representations of moment candidates
and queries, i.e., ĤC and ĤQ. And then it projects all these
representations into the same Hamming space to obtain the
corresponding hash codes BC and BQ. After that, the similarity
can be measured via Hamming distance,

D
cp
s j = 1

2
(L − bT

cp
bs j ), (12)

where bcp and bs j refer to the corresponding hash codes of
the p-th moment candidate and the j -th query, respectively.
The smaller the D

cp
s j is, the more similar cp and s j will be,

and vice versa. Finally, after obtaining the similarity values
for all “moment-query” pairs according to Eq. (12), the target
moment of each query can be efficiently localized by ranking
the corresponding similarity values.

IV. EXPERIMENTS

To thoroughly justify the effectiveness of our proposed
model, we carried out extensive experiments to answer the
following three research questions (RQs):

• RQ1: Is our proposed CMHN able to outperform several
state-of-the-art competitors for moment localization?

• RQ2: Is each component of our model helpful for boost-
ing the performance?

• RQ3: Is CMHN much more efficient and scalable than
the state-of-the-art competitors?

A. Experimental Settings

1) Datasets: In this paper, we adopted two benchmark
datasets, namely ActivityNet Captions [16] and TACoS [15],
to evaluate our proposed model. The former contains
20,000 untrimmed videos, and each video has 3 natural
language queries on average along with temporal annotations.
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TABLE I

DATA STATISTICS OF ACTIVITYNET CAPTIONS AND TACoS, INCLUDING
THE NUMBER OF VIDEOS (#VIDEO) AND QUERIES (#QUERY), ADV

(SECONDS), ADM (SECONDS), AND THE AVERAGE LENGTH OF

QUERY (ALQ)

Specifically, each query is related to one target moment within
the video. To facilitate the comparison, we followed the
validation split introduced in [12], whereby val_1 is used for
validating and val_2 for testing. As to the other dataset with
127 videos, each video involves an average of 148 natural
language queries and temporal annotations. Compared with
the ActivityNet Captions, the average duration of video (ADV)
in TACoS is generally longer, while that of moment (ADM)
is relatively shorter. The details of the two datasets are
summarized in Table I.

2) Evaluation Metrics: To thoroughly measure our model
and the baselines, we selected “R@n, IoU = m” designed
by [35] as the evaluation metric of localization accuracy. In the
following, we utilized R(n, m) to denote “R@n, IoU=m”.
Moreover, we employed the total run time (TRT) and the
average run time (ART) as the efficiency evaluation metrics.
To be more specific, TRT denotes the overall run time to
complete moment localization for all the queries; ART refers
to the average run time to complete the moment localization
based on each query,

ART = T RT

Nq
, (13)

where Nq is the total number of queries.
3) Implementation Details: For each video in these datasets,

we considered 16 continuous frames as a unit with 8 frames
overlapping between adjacent units. Subsequently, all the
units are input into the pre-trained C3D [30] to produce a
4,096-d feature for each unit. In particular, for each unit
of ActivityNet Captions, the feature is further reduced from
4,096-d to 500-d by the PCA strategy [16]. Accordingly,
these 500-d and 4,096-d features are adopted respectively
as the local features of ActivityNet Captions and TACoS.
Moreover, all the parameters of VEN and QEN are initialized
randomly. The adam optimizer [36] is adopted to minimize the
multi-task loss. The grid search strategy is used to determine
the hyper-parameters α and β in Eq. (11). Specially, in this
paper, we set α = β = 1 for the subsequent experiments.
During training, for ActivityNet Captions, each batch packs an
average of 1,648 “moment-query” pairs and the learning rate
is set to 0.001; for TACoS, each batch contains an average
of 4,865 “moment-query” pairs and the learning rate is set

TABLE II

PERFORMANCE OF CMHN WITH DIFFERENT HASH CODE LENGTH L ON
ACTIVITYNET CAPTIONS AND TACoS. SPECIFICALLY, WE SET “R@n,

IoU = m” WITH n ∈ {1, 5} AND m ∈ {0.3, 0.5, 0.7}

TABLE III

LOCALIZATION ACCURACY COMPARISON BETWEEN OUR PROPOSED

MODEL AND SEVERAL STATE-OF-THE-ART BASELINES ON ACTIVI-
TYNET CAPTIONS DATASET. (P-VALUE∗: P-VALUE OVER R(1, 0.5))

to 0.0001. And we empirically set the maximum number of
epochs as 500 to ensure the convergence. Moreover, all the
experiments are conducted over a computer equipped with
Ubuntu 16.04.6 LTS, Intel Xeon CPU E5-2620, 128 GB
Memory and NVidia TITAN Xp GPU.

4) Hash Code Length Setting: The length of hash code,
i.e., L, is a crucial hyper-parameter of our proposed CMHN.
Therefore, we should find the optimal setting before con-
ducting formal performance comparisons. We studied the
impact of different L on localization accuracy and efficiency.
Experimental results on ActivityNet Captions and TACoS
are summarized in Table II. Obviously, with the hash code
length L increasing, the localization accuracy of CMHN is
improved continuously, but the corresponding running time is
also increasing concurrently. This fact reflects that longer hash
codes could retain more information to improve the accuracy,
yet it may deteriorate the localization efficiency. Accordingly,
to further balance the accuracy and efficiency of CMHN,
the hash code length of CMHN is set as 256 on ActivityNet
Captions and 128 on TACoS, respectively.

B. On Model Comparison (RQ1)

In order to justify the effectiveness of our proposed CMHN,
we compared it with six state-of-the-art baselines: MCN [14],
CTRL [15], ACRN [7], ABLR [11], QSPN [29], and
CMIN [12].

Table III and Table IV report the overall localization accu-
racy comparisons of our CMHN and baselines on ActivityNet
Captions and TACoS datasets, respectively. For the above two
datasets, we set the unified evaluation criteria “R@n, IoU=m”
with n ∈ {1, 5} and m ∈ {0.3, 0.5, 0.7}.
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Fig. 7. Localization accuracy comparison between our CMHN and its variants on ActivityNet Captions and TACoS datasets. (a) The experimental results
based on R@5 w.r.t IoU ∈ {0.1, . . . , 0.9} on ActivityNet Captions dataset; (b) The experimental results based on R@5 w.r.t IoU ∈ {0.1, . . . , 0.9} on TACoS
dataset.

TABLE IV

LOCALIZATION ACCURACY COMPARISON BETWEEN OUR PROPOSED

MODEL AND SEVERAL STATE-OF-THE-ART BASELINES ON TACoS
DATASET. (P-VALUE∗: P-VALUE OVER R(1, 0.5))

From Table III and Table IV, we have the following
observations:

• Both MCN and CTRL deliver inferior performance,
because they incorporate contextual information by either
roughly fusing the entire video features or extending
the moment boundaries within a limited scale. More
concretely, the former fuses too much contextual informa-
tion, which may bring in noise information and hurt the
discriminative context representation. The latter merely
considers limited pre- and post-moment extension as con-
text, it hence fails to model the longer-term dependencies.

• ACRN, QSPN, and ABLR obtain higher accuracy than
MCN and CTRL. This reflects that the attention mech-
anism indeed highlight crucial modality information to
enhance the corresponding feature representation. Note
that ABLR directly regresses the temporal locations based
on visual-textual co-attention weights/features, it hence
merely generates one prediction for a query.

• CMIN has relatively higher accuracy than other baselines
do, which verifies that the long-range semantic depen-
dency modeling is critical for moment localization.

• CMHN achieves the highest localization accuracy, sub-
stantially surpassing all state-of-the-art baselines, espe-
cially on TACoS. These results demonstrate the effec-
tiveness of our proposed model. Furthermore, we also
conducted a significance test between CMHN and each
of the baselines regarding R(1,0.5) based on the 20-
round results. All the p-values are smaller than 0.05,

indicating that the advantage of our CMHN is statistically
significant.

Interestingly, the accuracy of all the methods on TACoS
is much lower than that on ActivityNet Captions. The main
reasons can be summarized as follows: 1) the longer ADV
and the shorter ADM on TACoS bring greater challenges
on effective moment representation. And 2) the more queries
and less AL Q may also lead to difficulty in differentiating
similar moments with different queries. In general, moment
localization on TACoS is more challenging than that on
ActivityNet Captions.

C. On Component Analysis (RQ2)

We conducted some ablation studies on video encod-
ing, query encoding, and cross-modal hashing. Concretely,
we omitted one component once to generate the corresponding
ablation models as follows.

• CMHN-V: We utilized traditional Bi-LSTM to replace
our proposed Bi-TCN in VEN for video encoding.

• CMHN-T: We used traditional TCN to replace our pro-
posed Bi-TCN in VEN for video encoding.

• CMHN-S: We adopted Glove word2vec [37] and
Bi-LSTM to replace BERT in QEN for query encoding.

• CMHN-H: We eliminated our proposed cross-modal sim-
ilarity matrix (CSM) and set the threshold λ = 0.5 to
obtain the hard similarity matrix T for evaluating the
similarity of each “moment-query” pair.

We conducted component-wise evaluation on ActivityNet
Captions and TACoS datasets, respectively. The results are
summarized in Fig. 7. By jointly analyzing the experimental
results, we have the following findings:

• CMHN-H performs the worst on the two datasets.
Especially in the case of relatively large IoU (IoU ∈
{0.6, 0.7, 0.8, 0.9}), the disadvantage of CMHN-H in
localization accuracy becomes more apparent. This phe-
nomenon reveals that this hard similarity representation
(1-or-0) cannot accurately reflect the complex intrinsic
semantic similarities of “moment-query” pairs and hence
fails to identify the appropriate target moment related
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TABLE V

RUNNING TIME COMPARISON BETWEEN OUR PROPOSED CMHN
AND THE STATE-OF-THE-ART BASELINES ON ACTIVITYNET

CAPTIONS AND TACoS DATASETS

to the corresponding query. Accordingly, the consid-
erable improvement achieved by CMHN verifies the
effectiveness of our proposed soft similarity matrix for
cross-modal hashing.

• Compared with CMHN, the localization accuracy of
CMHN-S, CMHN-V, and CMHN-T is relatively low. This
situation implies that: 1) word2vec based query encoding
cannot understand the corresponding queries more deeply
than BERT; 2) Bi-LSTM is incapable of temporal context
modeling for relatively long videos; and 3) TCN cannot
simultaneously capture the pre-context and post-context
information for enhanced feature modeling, therefore
failing to achieve more effective video encoding than
Bi-TCN does.

• Our proposed CMHN model outperforms all variants on
both datasets, which adequately demonstrates that the
Bi-TCN, BERT, and CSM are all helpful for moment
localization.

D. On Efficiency and Scalability Analysis (RQ3)

1) Localization Efficiency Comparison: Table V reports
overall efficiency comparison between our CMHN and base-
lines on ActivityNet Captions and TACoS datasets. Through
analyzing Table V, we could find that:

• ART and TRT of the ABLR model are smaller than the
two stage “scan and localize” architecture, such as the
MCN, CTRL and ACRN. This is because the latter mod-
els generate densely overlapped moment candidates by
the sliding window approach for cross-modal localization.
However, to avoid redundant computations, the ABLR
evenly divides the original video into the corresponding
moment candidates and performs temporal coordinates
regression.

• The ART and TRT of CMIN model are much smaller than
that of other baselines. The main reason is that CMIN
further downsamples the 500-d feature sequences to 200-
d, after using PCA to reduce the original video feature
dimension from 4,096-d to 500-d. Compared with other
baselines, these operations not only accelerate the video
encoding, but also improve the overall efficiency.

• The efficiency of CMHN is better than that of all the
baselines. Especially on the TACoS dataset, the efficiency
of CMHN is at least one order of magnitude higher than

Fig. 8. Scalability comparison between our proposed CMHN and the CMIN
on ActivityNet Captions with different numbers of queries. We use “2X” to
denote that the queries in the testing set are copied once, i.e., the current
number of queries in the testing set is 34, 062 = 2 ∗ 17, 031. (a) The
TRT results regarding {1X, 2X, . . . , 10X} queries; and (b) the ART results
regarding {1X, 2X, . . . , 10X} queries.

that of CMIN. These results verify the high efficiency of
our proposed model.

2) Localization Scalability Comparison: Through the previ-
ous efficiency analyses, we could find that there is a large gap
between the workload of cross-modal moment localization on
the two datasets. Specifically, the average number of moments
to be localized for each video in ActivityNet Captions is 3,
i.e., nearly three queries related to one video. But the average
number of moments to be localized for each video in TACoS
dataset is 148. Since the localization efficiency (ART) of
CMIN is slightly better than our proposed CMHN on Activ-
ityNet Captions (7.2 ms vs 7.6 ms), we further analyzed the
scalability of them on ActivityNet Captions. In particular, both
two models are completely trained offline using the identical
training set, we then compared their running time when the
number of online queries is multiplied.

The comparison results are shown in Fig. 8. Regarding the
TRT results in Fig. 8(a), it is obvious that the corresponding
TRT results of both models continuously rise along with the
increase of queries. However, the growth rate of our proposed
CMHN is much lower than that of CMIN. This is because
the attentive aggregation module of the CMIN model relies
heavily on video information. In other words, given different
queries, CMIN must re-execute the video encoder and the
attentive aggregation module to extract the corresponding
enhanced representations. Therefore, the continuous increase
of queries would lead to a sharp rise of the TRT. On the con-
trary, the VEN and QEN module of our model are completely
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Fig. 9. Moment localization results on ActivityNet Captions and TACoS
datasets. All the above figures are the R@1 results.

independent, we hence able to learn the hash codes of any
new videos and queries offline, which promotes the efficiency
of localization. In light of this, our proposed CMHN is less
susceptible than that of CMIN with the increasing number of
queries.

In Fig. 8(b), along with the increasing number of queries,
the ART results of CMIN are slightly fluctuating around the
average of 7.28. This illustrates that the average running time
for localizing one moment in a certain video is basically
the same. In contrast, the ART results of our model CMHN
are continuously decreasing, verifying that the growth rate of
TRT is much smaller than the increase amplitude of queries,
as defined in Eq. (13). According to the above analyses, we can
find that with the increase of queries, the TRT growth rate of
CMHN is much smaller than that of CMIN, i.e., our proposed
CMHN has superior scalability compared with the state-of-
the-art baseline.

E. Qualitative Results

To qualitatively validate the effectiveness of our proposed
CMHN model, we presented several examples of moment
localization by different queries. In particular, Fig. 9 shows the
results of CMHN and the best baseline CMIN on ActivityNet
Captions and TACoS datasets, respectively. From the results
shown in Fig. 9, it is obvious that our proposed CMHN model
obtains more accurate results, i.e., the moment returned by
our model has the larger IoU with the ground truth moment.
The reasons for these comparison results may be two-folds
1) our proposed Bi-TCN based CMHN can well capture the
long-term contextual semantic dependencies than the Bi-GRU
based CMIN; and 2) CMHN utilizes IoU based cross-modal
similarity matrix to reflect the semantic similarity of each
“moment-query” pair for the subsequent cross-modal hash
code learning, which could help CMHN return better moment
localization results to some extent.

V. CONCLUSION AND FUTURE WORK

Given a natural language query and a video, in this paper,
we present an end-to-end deep cross-modal hashing network
to localize the matched video moment, the so-called moment
localization. Specifically, we first integrate a bidirectional

temporal convolutional network into the video encoder, which
could characterize temporal contextual structures at multiple
scales of time windows, to simultaneously generate moment
candidates and their enhanced representations. As a coun-
terpart, we design an independent query encoder to well
understand the user requirements. Thereafter, a cross-model
hashing module is introduced for compact hash code learning.
Based upon the hash codes, we can effectively estimate the
relevance score of each “moment-query” pair via the Hamming
distance. To justify the effectiveness, efficiency and scalability,
we conducted extensive experiments on two public benchmark
datasets compared with several state-of-the-art competitors.
As a byproduct, we have released the data, codes, and para-
meter settings to facilitate research in this community.

In the future, we plan to deepen and widen our work from
the following two aspects: 1) As shown in Fig. 7, when
IoU is larger than 0.7, the corresponding accuracy of CMHN
is relatively low. Motivated by this, we intend to integrate
the necessary spatial information into our model to improve
localization accuracy. And 2) we will incorporate query-guided
moment proposal network into our model to adaptively gener-
ate the corresponding moment candidates related to the given
query for reducing the searching space while boosting the
localization efficiency.
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